白水泥厂家
免费服务热线

Free service

hotline

010-00000000
白水泥厂家
热门搜索:
技术资讯
当前位置:首页 > 技术资讯

声发射源多传感器数据融合识别技术

发布时间:2020-06-30 19:11:05 阅读: 来源:白水泥厂家

在声发射检测中,为了达到较为精确的定位,通常采用时差定位方法,这就需要两个或两个以上的传感器组合使用。如平面三角形定位,用三个传感器为一个定位组。而在以前人们所做的声发源特性识别方面的研究,都只是针对某一传感器的信号进行分析识别。由于声发射信号具有瞬态性和随机性,属于非平稳的随机信号,并且是由一系列频率和模式丰富的信号组成,而且在声波的传播过程中,又存在着衰减、反射、折射与模式转换,所以对同一声发射源的分析识别,定位组的各个传感器的结果可能不相同。在这种情况下,要想获得较高的识别可信度,就必须有一种方法对所获得的矛盾信息进行处理,对检测到的信号进行合理支配和使用,把多个传感器关于同一声发射源冗余或互补信息依照某种准则进行组合,减少识别过程中的不确定性,才能获得对声发射源的正确判断。尤其是对同一检测对象,我们采用不同类型的声发射传感器(如宽带、谐振等),到底更应该相信那个传感器的结果?更复杂的情况,当同时存在超声或者应力应变等传感器的检测结果时,如何利用所有类型和不同位置传感器的信息,得到最为真实的结果,就显得非常重要。 2.1基于D-S理论的声发射源识别方法[3] 从声发射源发出的信号经过传输介质到达传感器,信号会发生变化或损失,各个传感器检测到的波形信号一般是不完整、不精确、模糊的,甚至可能是矛盾的,即包含着过程的不确定性。我们只能根据这些不确定性信息进行分析推理,最终得出声发射源的定性判别。不确定性推理最常用的方法有:Bayes方法和D-S证据理论两种。与Bayes方法相比,D-S证据理论有一个非常突出的优点,就是无需先验概率和条件概率,这对声发射检测这类几乎没有先验知识和专家库的新型技术显得非常有用,而且各个传感器之间的证据是相互独立的,每个定位组的探头数一般为三、四个,推理链不长,使用D-S规则非常方便。 对于声发射源识别的数据融合模型结构按数据抽象的层次划分主要有三类:数据级融合,特征级融合和决策级融合。根据声发射信号的特点,一般选择最高层次的融合方法,即决策级融合。由于球罐、桥梁等大型构件,通常采用数十个通道同时进行信号采集,而且一般声发射检测持续的时间较长,当进行全波形采集时数据量非常大,要对所有定位相关组的传感器进行集中决策处理会大大降低系统的效率和实时性。所以,在各个传感器局部目标识别的基础上,进行全局决策的结构比较适合声发射检测的特点,操作起来非常灵活,也有利于减少系统的复杂程度,使整个决策系统清晰可靠。在一个或几个传感器判断失效的情况下仍能继续工作,即系统具有一定的容错能力,总能得到一个唯一的识别结果。这对保证工程检测结果能够得到一个最终的安全性评价十分必要。此外,在工程上对于同一个声发射源还可能进行其他检测方法的复验(如采用超声、射线检测等),以保证最终结果可靠。采用这种决策级的融合结构可以方便地对不同类型传感器或者检测方法的局部识别结果进行扩充融合,而不必对已有的系统结构做过多的修改。 应用D-S证据理论的关键是如何构造基本概率分布函数。D-S理论本身并没有现成的表达式,使用者应根据经验或具体的统计证据构造。对声发射检测的具体情况,构造如下概率分布函数[4]。 设N为同一定位组中传感器的数目(对于三角形定位N=3),M为声发射源的种类数(如裂纹、泄漏、外部噪声等等),则 i=1,2,…,N (1) j=1,2,…,M (2) 上式中各符号如下定义: Ci(j):传感器i与声发射源类别j之间的属性测度,是单个传感器的识别结果。一般通过小波及神经网络的处理获得属性测度值;

山西定做职业装

山东防静电工作服订制

德州工作服制作